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Agenda

@

 Introduction and problem statement

o reduce the number of aborts
= memory consumption
= Invisible reads

e SMV algorithm
o keeps versions that can help save aborts
o automatically removes others

e Preliminary evaluation
o good for read-dominated workloads
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Forceful aborts

©

e Aborting transactions is bad
o work is lost
O resources are wasted
o overall throughput decreases
o livelock
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Unnecessary aborts
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» Sometimes aborts are necessary
o continuing the run would violate correctness

* And sometimes they are not
o the suspicion is unjustified
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Multi-Versioning in STM

©

o Keeping multiple versions can prevent aborts
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GC challenge

©

e Must clean up the old versions

* Many existing TMs keep a list of n past versions
o0 some kept versions are useless
o some potentially useful versions are removed
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Visibility challenge

@

* Changes in memory accessed by other transactions
o demand the use of costly mechanisms (e.g., volatile variables)

* We want invisible readers
o do not change data that can be read by others
o avold cache thrashing
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SMV design principles

o Atxnis aborted if:

O update txn: an object from the read-set is overwritten (like most
other STMs existing today)

o read-only txn: (almost) never — commits in a lock-free manner
T, reads the latest object value written before T, starts
» Versions are kept as long as they might be needed
» Read-only transactions are invisible
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SMYV design principles — GC challenge

10

o A version Is removed when o Readers are invisible
It has no potential readers

~~

* No transaction can know whether a given version
can be removed
o explicit GC Is not possible
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Automated GC in SMV

©

» Solution: use auxiliary GC threads provided by
managed memory systems
O remove unreachable object versions

» Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads

o theoretically visible
o practically invisible (GC threads run infrequently)
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SMYV time progress

 Logical version clock
o Incremented by update transactions upon commit
o Implemented as a linked list of time points

curPoiW
‘i:\ time point 9 > time point 10 > time point 11

* Object handles

o hold versioned locks ala TL2 or o5 ~_4<: data
o point to the latest object versiononly
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Selective Multi-Versioning STM — overview
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Selective Multi-Versioning STM — GC overview

e Old versions are kept as long as they have potential readers
o after that they are garbage collected automatically
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“Unready” time points Issue

©,

e Committing transaction: ver < start time?
o firstinserts the new time point 0, /
o then updates the write-set {7

» Potential problem:
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e Asimilar problem is the reason for using locks + double
checking in TL2 (each read is pre- and post-validated)
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“Unready” time points solution

e Each time point has a boolean ready flag
o true when all the objects are updated

* readyPoint points to the latest time point in the ready prefix

ver < start time?
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Limiting time point traversals

@

e The number of traversed time points might be large
o along read-only txn interleaves with a lot of short update txns

e Limit this number
o the txn is aborted after traversing WindowsSize time points

» Breaks the guarantee of unabortable read-only txns
o but improves performance
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Preliminary evaluation — experiment setup

» STMBench7 evaluation framework — Java version
o read-dominated and read-write workloads support

e Implemented the following algorithms:
o SMV (WindowsSize = 100)
o SMVUnlimited (WindowSize = «)
o TL2-style — mimics the basic behavior of TL2
o k-versioned — each object keeps k versions (like in LSA)

* Did not use the software optimizations used in the
original algorithms
o common code platform for comparing the algorithmic issues only
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Read-dominated workloads

 Emphasize the strong sides of SMV:
o Intensive use of old object versions by read-only txns
o read-only txns do not need to traverse many time points
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Read-write workloads

Q

* Present the worst-case scenario for SMV:
O update txns cannot leverage multiple versions (low commit-ratio)
o read-only txns traverse long time point list suffixes (high overhead)
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Memory consumption
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Read-write workloads
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Further work

e Deuce framework

o field-based synchronization
o STAMP + STMBench7 benchmarks built-in

* Profiling
O overhead vs. aborts rate

e GC threads in the non-managed environment
o fine-tuned GC for txn objects
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Thank you
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