
D M I T R I P E R E L M A N
I D I T K E I D A R

TRANSACT 2010

SMV: Selective Multi-Versioning
STM

1

Agenda

TRANSACT 2010

2

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

Forceful aborts

TRANSACT 2010

 Aborting transactions is bad
 work is lost
 resources are wasted
 overall throughput decreases
 livelock

3

Unnecessary aborts

TRANSACT 2010

 Sometimes aborts are necessary
 continuing the run would violate correctness

 And sometimes they are not
 the suspicion is unjustified

4

o1

o2
C

A

necessary
abort

o1

o2
C

A

unnecessary
abort

T2

T1

T1
T2

T3

Multi-Versioning in STM

TRANSACT 2010

 Keeping multiple versions can prevent aborts

5

o1

o2
C C

cannot read the
latest version – read

the previous one

o1

o2
C

cannot read the
latest version –

abort

A

T1 T2 T1 T2

Single-versioned STM Multi-versioned STM

GC challenge

TRANSACT 2010

6

 Must clean up the old versions
 Many existing TMs keep a list of n past versions
 some kept versions are useless
 some potentially useful versions are removed

o1

o2

The sixth
version is
removed

The needed
version has been

removed

A

TM keeps the list
of 5 past object

versions

Past versions are
kept though they
will never be read

T1 T2

Visibility challenge

TRANSACT 2010

7

 Changes in memory accessed by other transactions
 demand the use of costly mechanisms (e.g., volatile variables)

 We want invisible readers
 do not change data that can be read by others
 avoid cache thrashing

Agenda

TRANSACT 2010

8

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

SMV design principles

TRANSACT 2010

9

 A txn is aborted if:
 update txn: an object from the read-set is overwritten (like most

other STMs existing today)
 read-only txn: (almost) never – commits in a lock-free manner

 Ti reads the latest object value written before Ti starts
 Versions are kept as long as they might be needed
 Read-only transactions are invisible

o1

o2
C

C

T1 T2

o3

Start time
snapshot

SMV design principles – GC challenge

TRANSACT 2010

10

 No transaction can know whether a given version
can be removed
 explicit GC is not possible

 A version is removed when
it has no potential readers

 Readers are invisible

o1

o2
C

T1 T2 o1

o2
C

T2

Kept Removed

Indistinguishable

Automated GC in SMV

TRANSACT 2010

11

 Solution: use auxiliary GC threads provided by
managed memory systems
 remove unreachable object versions

 Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
 theoretically visible
 practically invisible (GC threads run infrequently)

SMV time progress

TRANSACT 2010

12

 Logical version clock
 incremented by update transactions upon commit
 implemented as a linked list of time points

 Object handles
 hold versioned locks ala TL2
 point to the latest object version only

time point 9 time point 10 time point 11

ver = 5

o1

data

curPoint

Selective Multi-Versioning STM – overview

TRANSACT 2010

13

curPoint

time point 9

T1

ver = 5

o1

data5

o1

o2

ver = 5

o2

data5
C

time point 10

ver = 10 ver = 10

data10data10

ver ≤ start time?
T1 T2

The value
to be read

Selective Multi-Versioning STM – GC overview

TRANSACT 2010

14

curPoint

time point 9

o1

data5

o1

o2

o2

data5
C

time point 10

ver = 10 ver = 10

data10data10
C

time point 11

T1 T2

T1

 Old versions are kept as long as they have potential readers
 after that they are garbage collected automatically

“Unready” time points issue

TRANSACT 2010

15

 Committing transaction:
 first inserts the new time point
 then updates the write-set

 Potential problem:

 A similar problem is the reason for using locks + double
checking in TL2 (each read is pre- and post-validated)

curPoint

time point 9

T2

ver = 5

o1

data5

ver = 5

o2

data5

time point 10

ver = 10

data10

ver ≤ start time?

reads o1 and o2

T1
writes o1 and o2

correctness
violation!

paused

“Unready” time points solution

TRANSACT 2010

16

 Each time point has a boolean ready flag
 true when all the objects are updated

 readyPoint points to the latest time point in the ready prefix

curPoint
time point 9
ready = true

T2

ver = 5

o1

data5

ver = 5

o2

data5

time point 10
ready = false

ver = 10

data10

ver ≤ start time?

reads o1 and o2

T1
writes o1 and o2

consistent snapshot

readyPoint

paused

Limiting time point traversals

TRANSACT 2010

17

 The number of traversed time points might be large
 a long read-only txn interleaves with a lot of short update txns

 Limit this number
 the txn is aborted after traversing WindowSize time points

 Breaks the guarantee of unabortable read-only txns
 but improves performance

T1

… …

WindowSize

time point 9 time point 10 time point 11 time point 59 time point 60

Agenda

TRANSACT 2010

18

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

Preliminary evaluation – experiment setup

TRANSACT 2010

19

 STMBench7 evaluation framework – Java version
 read-dominated and read-write workloads support

 Implemented the following algorithms:
 SMV (WindowSize = 100)
 SMVUnlimited (WindowSize = ∞)
 TL2-style – mimics the basic behavior of TL2
 k-versioned – each object keeps k versions (like in LSA)

 Did not use the software optimizations used in the
original algorithms
 common code platform for comparing the algorithmic issues only

Read-dominated workloads

TRANSACT 2010

20

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
om

m
it

ra
tio

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style
0

100

200

300

400

500

600

700

1 2 4 8 16 32

Tr
an

sa
ct

io
ns

/s
ec

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

 Emphasize the strong sides of SMV:
 intensive use of old object versions by read-only txns
 read-only txns do not need to traverse many time points

Read-write workloads

TRANSACT 2010

21

0

100

200

300

400

500

600

1 2 4 8 16 32

Tr
an

sa
ct

io
ns

/s
ec

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
om

m
it

ra
tio

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

 Present the worst-case scenario for SMV:
 update txns cannot leverage multiple versions (low commit-ratio)
 read-only txns traverse long time point list suffixes (high overhead)

Memory consumption

TRANSACT 2010

22

0

200

400

600

800

1000

1200

1 16 32

M
B

yt
es

Threads

SMV

SMVUnlimited

4-ver

8-ver

TL2

0

200

400

600

800

1000

1200

1400

1 16 32

M
B

yt
es

Threads

SMV

SMVUnlimited

4-ver

8-ver

TL2

SMVUnlimited memory
consumption is high because of

long read-only txns

Read-dominated workloads Read-write workloads

SMV memory consumption is
low – for most of the objects

keeps last version only

Further work

TRANSACT 2010

23

 Deuce framework
 field-based synchronization
 STAMP + STMBench7 benchmarks built-in

 Profiling
 overhead vs. aborts rate

 GC threads in the non-managed environment
 fine-tuned GC for txn objects

TRANSACT 2010

24

Thank you

	SMV: Selective Multi-Versioning STM
	Agenda
	Forceful aborts
	Unnecessary aborts
	Multi-Versioning in STM
	GC challenge
	Visibility challenge
	Agenda
	SMV design principles
	SMV design principles – GC challenge
	Automated GC in SMV
	SMV time progress
	Selective Multi-Versioning STM – overview
	Selective Multi-Versioning STM – GC overview
	“Unready” time points issue
	“Unready” time points solution
	Limiting time point traversals
	Agenda
	Preliminary evaluation – experiment setup
	Read-dominated workloads
	Read-write workloads
	Memory consumption
	Further work
	Thank you

