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 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads 



Forceful aborts
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 Aborting transactions is bad
 work is lost
 resources are wasted
 overall throughput decreases
 livelock
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Unnecessary aborts
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 Sometimes aborts are necessary
 continuing the run would violate correctness

 And sometimes they are not 
 the suspicion is unjustified
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Multi-Versioning in STM
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 Keeping multiple versions can prevent aborts
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 Must clean up the old versions
 Many existing TMs keep a list of n past versions
 some kept versions are useless
 some potentially useful versions are removed
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 Changes in memory accessed by other transactions
 demand the use of costly mechanisms (e.g., volatile variables)

 We want invisible readers
 do not change data that can be read by others
 avoid cache thrashing
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 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads 



SMV design principles
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 A txn is aborted if:
 update txn: an object from the read-set is overwritten (like most 

other STMs existing today)
 read-only txn: (almost) never – commits in a lock-free manner

 Ti reads the latest object value written before Ti starts
 Versions are kept as long as they might be needed
 Read-only transactions are invisible
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SMV design principles – GC challenge
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 No transaction can know whether a given version 
can be removed
 explicit GC is not possible

 A version is removed when 
it has no potential readers 

 Readers are invisible
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Automated GC in SMV
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 Solution: use auxiliary GC threads provided by 
managed memory systems
 remove unreachable object versions

 Read-only transactions are invisible to other 
transactions, but visible to the “see-all” GC threads
 theoretically visible
 practically invisible (GC threads run infrequently)



SMV time progress
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 Logical version clock 
 incremented by update transactions upon commit
 implemented as a linked list of time points

 Object handles
 hold versioned locks ala TL2
 point to the latest object version only
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Selective Multi-Versioning STM – overview
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Selective Multi-Versioning STM – GC overview
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 Old versions are kept as long as they have potential readers
 after that they are garbage collected automatically



“Unready” time points issue
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 Committing transaction:
 first inserts the new time point
 then updates the write-set

 Potential problem:

 A similar problem is the reason for using locks + double 
checking in TL2 (each read is pre- and post-validated)
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“Unready” time points solution
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 Each time point has a boolean ready flag
 true when all the objects are updated

 readyPoint points to the latest time point in the ready prefix 
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Limiting time point traversals
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 The number of traversed time points might be large
 a long read-only txn interleaves with a lot of short update txns

 Limit this number
 the txn is aborted after traversing WindowSize time points

 Breaks the guarantee of unabortable read-only txns
 but improves performance
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 memory consumption
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 good for read-dominated workloads 



Preliminary evaluation – experiment setup
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 STMBench7 evaluation framework – Java version
 read-dominated and read-write workloads support

 Implemented the following algorithms:
 SMV (WindowSize = 100)
 SMVUnlimited (WindowSize = ∞)
 TL2-style – mimics the basic behavior of TL2
 k-versioned – each object keeps k versions (like in LSA)

 Did not use the software optimizations used in the 
original algorithms
 common code platform for comparing the algorithmic issues only



Read-dominated workloads
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 Emphasize the strong sides of SMV:
 intensive use of old object versions by read-only txns
 read-only txns do not need to traverse many time points



Read-write workloads
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 Present the worst-case scenario for SMV:
 update txns cannot leverage multiple versions (low commit-ratio)
 read-only txns traverse long time point list suffixes (high overhead)



Memory consumption
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Further work
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 Deuce framework
 field-based synchronization
 STAMP + STMBench7 benchmarks built-in

 Profiling
 overhead vs. aborts rate

 GC threads in the non-managed environment
 fine-tuned GC for txn objects
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Thank you
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