SMV: Selective Multi-Versioning
STM

DMITRI PERELMAN
IDIT KEIDAR

‘:vz Technion
Israel Institute of

Technology

TRANSACT 2010

Agenda

@

 Introduction and problem statement

o reduce the number of aborts
= memory consumption
= Invisible reads

e SMV algorithm
o keeps versions that can help save aborts
o automatically removes others

e Preliminary evaluation
o good for read-dominated workloads

TRANSACT 2010

Forceful aborts

©

e Aborting transactions is bad
o work is lost
O resources are wasted
o overall throughput decreases
o livelock

TRANSACT 2010

Unnecessary aborts

O,

necessary | | unnecessary |
abort i | abort
T1 A T3 A
o1 P, 01 {
1
02 02 -
T2 C T2 C

» Sometimes aborts are necessary
o continuing the run would violate correctness

* And sometimes they are not
o the suspicion is unjustified

TRANSACT 2010

Multi-Versioning in STM

©

o Keeping multiple versions can prevent aborts

Single-versioned STM Multi-versioned STM
T1 T2 T1 T2
o1 ® o1 {3
02 ® 9 02 O
C A \\\ C ,/C , Shae T
~~.--7 [cannotread the

e | latest version —read |

cannot read the the previous one
latest version —

abort

TRANSACT 2010

GC challenge

©

e Must clean up the old versions

* Many existing TMs keep a list of n past versions
o0 some kept versions are useless
o some potentially useful versions are removed

TL T2

TM keeps the list 01
of 5 past object
versions 02 =

'~
o~

,,,,,,, 4 _Y_/ AT
[P - { The needed
! The sixth Past versions are | version has been
Version Is | kept though they i removed
removed ; will never be read

TRANSACT 2010

Visibility challenge

@

* Changes in memory accessed by other transactions
o demand the use of costly mechanisms (e.g., volatile variables)

* We want invisible readers
o do not change data that can be read by others
o avold cache thrashing

TRANSACT 2010

Agenda

e Introduction and problem statement

o reduce the number of aborts
x memaory consumption
= Invisible reads

e SMV algorithm
o keeps versions that can help save aborts
o automatically removes others

e Preliminary evaluation
o good for read-dominated workloads

TRANSACT 2010

SMV design principles

o Atxnis aborted if:

O update txn: an object from the read-set is overwritten (like most
other STMs existing today)

o read-only txn: (almost) never — commits in a lock-free manner
T, reads the latest object value written before T, starts
» Versions are kept as long as they might be needed
» Read-only transactions are invisible

Tl T2
o1 @.
1
1
02 —9-!
AT >
. C.- \
I \~_—/z
03 @~ o ——
""" ; —¢I ~~_-_”’/, C
| Starttime |

snapshot |
TRANSACT 2010

SMYV design principles — GC challenge

10

o A version Is removed when o Readers are invisible
It has no potential readers

~~

* No transaction can know whether a given version
can be removed
o explicit GC Is not possible

o1

g\ Inaistinguishagle

02 —@ 02 — %

-
,,,,,

- -
........................ ey

(3 { '
| Kept | i Removed !

..................

2%
ol
O

TRANSACT 2010

Automated GC in SMV

©

» Solution: use auxiliary GC threads provided by
managed memory systems
O remove unreachable object versions

» Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads

o theoretically visible
o practically invisible (GC threads run infrequently)

TRANSACT 2010

SMYV time progress

 Logical version clock
o Incremented by update transactions upon commit
o Implemented as a linked list of time points

curPoiW
‘i:\ time point 9 > time point 10 > time point 11

* Object handles

o hold versioned locks ala TL2 or o5 ~_4<: data
o point to the latest object versiononly

;;;;;
N,

TRANSACT 2010

Selective Multi-Versioning STM — overview

ver < start time?

curPoint r‘“ﬁ;;';;lu‘e)
: : . ; | toberead |
S time point 9 > time point 10) ’

N -
~~~~~~~~

TRANSACT 2010




Selective Multi-Versioning STM — GC overview

e Old versions are kept as long as they have potential readers
o after that they are garbage collected automatically

mT O 02
o1 —
02 @@ T—— e,
C
curPoint
‘1: time point 9 > time point 10 > time point 11
T1

—————
L

/
-
~~~~~~~~

TRANSACT 2010

“Unready” time points Issue

©,

e Committing transaction: ver < start time?
o firstinserts the new time point 0, /
o then updates the write-set {7

» Potential problem:

ata, datg}a { da@
PZ\
‘i:: time point 9 > time point 10 correctness
violation!
11 T2

.‘paused writes 0, and 0, {) reads o, and o,

S
-
~~~~~~~~

N -
~~~~~~~~

e Asimilar problem is the reason for using locks + double
checking in TL2 (each read is pre- and post-validated)

TRANSACT 2010

“Unready” time points solution

e Each time point has a boolean ready flag
o true when all the objects are updated

* readyPoint points to the latest time point in the ready prefix

ver < start time?

readyPoint

-~ s,

/
"’
1%

curPoint
: . . ™ . .
ya . time point 9 { time point 10
< . ready = true 7 ready = false consistent snapshot
T N
if)‘ausea} writeso,ando, {) readso,and o,

.
. - .
~~~~~~~~~~~~~~~~

TRANSACT 2010




Limiting time point traversals

@

e The number of traversed time points might be large
o along read-only txn interleaves with a lot of short update txns

e Limit this number
o the txn is aborted after traversing WindowsSize time points

» Breaks the guarantee of unabortable read-only txns
o but improves performance

time point9 time point 10 time point 11 time point 59 time point 60
> > L B B >
T1 /‘/ Y ’
WindowSize

,,,,,,,,

TRANSACT 2010




Agenda

e Introduction and problem statement

o reduce the number of aborts
x memaory consumption
= Invisible reads

e SMV algorithm
o keeps versions that can help save aborts
o automatically removes others

e Preliminary evaluation
o good for read-dominated workloads

TRANSACT 2010




Preliminary evaluation — experiment setup

» STMBench7 evaluation framework — Java version
o read-dominated and read-write workloads support

e Implemented the following algorithms:
o SMV (WindowsSize = 100)
o SMVUnlimited (WindowSize = «)
o TL2-style — mimics the basic behavior of TL2
o k-versioned — each object keeps k versions (like in LSA)

* Did not use the software optimizations used in the
original algorithms
o common code platform for comparing the algorithmic issues only

TRANSACT 2010




Read-dominated workloads

 Emphasize the strong sides of SMV:
o Intensive use of old object versions by read-only txns
o read-only txns do not need to traverse many time points

700

1

—&— SMV
600 { —®— SMVUnlimited
—¢— 4-ver 0.8 -
§ 500 1 —o—gover o
~ =
n —%— TL2-Styl ©
S 400 | vie =06
Q
3 300 - L £
2 8 04 { —a—sSMV
g —#— SMVUnlimited
= 200 | .
0.2 —¥— 4-ver
100 —@— 8-ver
—%— TL2-Style
0 T 0
1 2 4 8 16 32 1 2 4 8 16 32
Threads (log scale) Threads (log scale)

TRANSACT 2010




Read-write workloads

Q

* Present the worst-case scenario for SMV:
O update txns cannot leverage multiple versions (low commit-ratio)
o read-only txns traverse long time point list suffixes (high overhead)

600

4 8 16 32
Threads (log scale)

1

—k— SMV
500 1 ~—— SMVUnlimited 08 |
—¥— 4-ver ’
[8)
8 400 - —&— 8-ver o
~ =]
@ —%— TL2-Style c 0.6 -
S
9 =
B 300
O
3 z
2 o 04 1 —&—SMV
S 200 | O -
= —#— SMVUnlimited
02 | —¥— 4-ver
100 A —@— 8-ver
—%— TL2-Style
0 + 0

2

4 8 16 32
Threads (log scale)

TRANSACT 2010




Memory consumption

1200

1000 -

800 -

MBytes
2
o

400 -

200 -

Read-dominated workloads

@

1400

mSMV
E SMVUnlimited

“ 4-ver

r. 8-ver

oTL2

_______________________________
-

;' SMV memory consumption is
low — for most of the objects |
keeps last version only

____________________________________________________

7
’

TRANSACT 2010

Read-write workloads

1200 -

1000 -

mSMV

m SMVUnlimited

A 4-ver

# 8-ver
oTL2

-

SMVUnllmlted memory

consumption is high because of |

long read-only txns




Further work

e Deuce framework

o field-based synchronization
o STAMP + STMBench7 benchmarks built-in

* Profiling
O overhead vs. aborts rate

e GC threads in the non-managed environment
o fine-tuned GC for txn objects

TRANSACT 2010




Thank you

TRANSACT 2010




	SMV: Selective Multi-Versioning STM
	Agenda
	Forceful aborts
	Unnecessary aborts
	Multi-Versioning in STM
	GC challenge
	Visibility challenge
	Agenda
	SMV design principles
	SMV design principles – GC challenge
	Automated GC in SMV
	SMV time progress
	Selective Multi-Versioning STM – overview
	Selective Multi-Versioning STM – GC overview
	“Unready” time points issue
	“Unready” time points solution
	Limiting time point traversals
	Agenda
	Preliminary evaluation – experiment setup
	Read-dominated workloads
	Read-write workloads
	Memory consumption
	Further work
	Thank you

