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 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads 



Forceful aborts
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 Aborting transactions is bad
 work is lost
 resources are wasted
 overall throughput decreases
 livelock
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Unnecessary aborts
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 Sometimes aborts are necessary
 continuing the run would violate correctness

 And sometimes they are not 
 the suspicion is unjustified
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Multi-Versioning in STM
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 Keeping multiple versions can prevent aborts

5

o1

o2
C C

cannot read the 
latest version – read 

the previous one

o1

o2
C

cannot read the 
latest version –

abort

A

T1 T2 T1 T2

Single-versioned STM Multi-versioned STM



GC challenge
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 Must clean up the old versions
 Many existing TMs keep a list of n past versions
 some kept versions are useless
 some potentially useful versions are removed
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 Changes in memory accessed by other transactions
 demand the use of costly mechanisms (e.g., volatile variables)

 We want invisible readers
 do not change data that can be read by others
 avoid cache thrashing
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 memory consumption
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 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
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SMV design principles
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 A txn is aborted if:
 update txn: an object from the read-set is overwritten (like most 

other STMs existing today)
 read-only txn: (almost) never – commits in a lock-free manner

 Ti reads the latest object value written before Ti starts
 Versions are kept as long as they might be needed
 Read-only transactions are invisible
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SMV design principles – GC challenge
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 No transaction can know whether a given version 
can be removed
 explicit GC is not possible

 A version is removed when 
it has no potential readers 

 Readers are invisible
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Automated GC in SMV
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 Solution: use auxiliary GC threads provided by 
managed memory systems
 remove unreachable object versions

 Read-only transactions are invisible to other 
transactions, but visible to the “see-all” GC threads
 theoretically visible
 practically invisible (GC threads run infrequently)



SMV time progress
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 Logical version clock 
 incremented by update transactions upon commit
 implemented as a linked list of time points

 Object handles
 hold versioned locks ala TL2
 point to the latest object version only

time point 9 time point 10 time point 11

ver = 5

o1

data

curPoint



Selective Multi-Versioning STM – overview
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Selective Multi-Versioning STM – GC overview
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 Old versions are kept as long as they have potential readers
 after that they are garbage collected automatically



“Unready” time points issue
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 Committing transaction:
 first inserts the new time point
 then updates the write-set

 Potential problem:

 A similar problem is the reason for using locks + double 
checking in TL2 (each read is pre- and post-validated)
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“Unready” time points solution
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 Each time point has a boolean ready flag
 true when all the objects are updated

 readyPoint points to the latest time point in the ready prefix 
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Limiting time point traversals
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 The number of traversed time points might be large
 a long read-only txn interleaves with a lot of short update txns

 Limit this number
 the txn is aborted after traversing WindowSize time points

 Breaks the guarantee of unabortable read-only txns
 but improves performance
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Preliminary evaluation – experiment setup
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 STMBench7 evaluation framework – Java version
 read-dominated and read-write workloads support

 Implemented the following algorithms:
 SMV (WindowSize = 100)
 SMVUnlimited (WindowSize = ∞)
 TL2-style – mimics the basic behavior of TL2
 k-versioned – each object keeps k versions (like in LSA)

 Did not use the software optimizations used in the 
original algorithms
 common code platform for comparing the algorithmic issues only



Read-dominated workloads
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 Emphasize the strong sides of SMV:
 intensive use of old object versions by read-only txns
 read-only txns do not need to traverse many time points



Read-write workloads
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 Present the worst-case scenario for SMV:
 update txns cannot leverage multiple versions (low commit-ratio)
 read-only txns traverse long time point list suffixes (high overhead)
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 Deuce framework
 field-based synchronization
 STAMP + STMBench7 benchmarks built-in

 Profiling
 overhead vs. aborts rate

 GC threads in the non-managed environment
 fine-tuned GC for txn objects
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Thank you
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