
D M I T R I P E R E L M A N
I D I T K E I D A R

TRANSACT 2010

SMV: Selective Multi-Versioning
STM

1

Agenda

TRANSACT 2010

2

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

Forceful aborts

TRANSACT 2010

 Aborting transactions is bad
 work is lost
 resources are wasted
 overall throughput decreases
 livelock

3

Unnecessary aborts

TRANSACT 2010

 Sometimes aborts are necessary
 continuing the run would violate correctness

 And sometimes they are not
 the suspicion is unjustified

4

o1

o2
C

A

necessary
abort

o1

o2
C

A

unnecessary
abort

T2

T1

T1
T2

T3

Multi-Versioning in STM

TRANSACT 2010

 Keeping multiple versions can prevent aborts

5

o1

o2
C C

cannot read the
latest version – read

the previous one

o1

o2
C

cannot read the
latest version –

abort

A

T1 T2 T1 T2

Single-versioned STM Multi-versioned STM

GC challenge

TRANSACT 2010

6

 Must clean up the old versions
 Many existing TMs keep a list of n past versions
 some kept versions are useless
 some potentially useful versions are removed

o1

o2

The sixth
version is
removed

The needed
version has been

removed

A

TM keeps the list
of 5 past object

versions

Past versions are
kept though they
will never be read

T1 T2

Visibility challenge

TRANSACT 2010

7

 Changes in memory accessed by other transactions
 demand the use of costly mechanisms (e.g., volatile variables)

 We want invisible readers
 do not change data that can be read by others
 avoid cache thrashing

Agenda

TRANSACT 2010

8

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

SMV design principles

TRANSACT 2010

9

 A txn is aborted if:
 update txn: an object from the read-set is overwritten (like most

other STMs existing today)
 read-only txn: (almost) never – commits in a lock-free manner

 Ti reads the latest object value written before Ti starts
 Versions are kept as long as they might be needed
 Read-only transactions are invisible

o1

o2
C

C

T1 T2

o3

Start time
snapshot

SMV design principles – GC challenge

TRANSACT 2010

10

 No transaction can know whether a given version
can be removed
 explicit GC is not possible

 A version is removed when
it has no potential readers

 Readers are invisible

o1

o2
C

T1 T2 o1

o2
C

T2

Kept Removed

Indistinguishable

Automated GC in SMV

TRANSACT 2010

11

 Solution: use auxiliary GC threads provided by
managed memory systems
 remove unreachable object versions

 Read-only transactions are invisible to other
transactions, but visible to the “see-all” GC threads
 theoretically visible
 practically invisible (GC threads run infrequently)

SMV time progress

TRANSACT 2010

12

 Logical version clock
 incremented by update transactions upon commit
 implemented as a linked list of time points

 Object handles
 hold versioned locks ala TL2
 point to the latest object version only

time point 9 time point 10 time point 11

ver = 5

o1

data

curPoint

Selective Multi-Versioning STM – overview

TRANSACT 2010

13

curPoint

time point 9

T1

ver = 5

o1

data5

o1

o2

ver = 5

o2

data5
C

time point 10

ver = 10 ver = 10

data10data10

ver ≤ start time?
T1 T2

The value
to be read

Selective Multi-Versioning STM – GC overview

TRANSACT 2010

14

curPoint

time point 9

o1

data5

o1

o2

o2

data5
C

time point 10

ver = 10 ver = 10

data10data10
C

time point 11

T1 T2

T1

 Old versions are kept as long as they have potential readers
 after that they are garbage collected automatically

“Unready” time points issue

TRANSACT 2010

15

 Committing transaction:
 first inserts the new time point
 then updates the write-set

 Potential problem:

 A similar problem is the reason for using locks + double
checking in TL2 (each read is pre- and post-validated)

curPoint

time point 9

T2

ver = 5

o1

data5

ver = 5

o2

data5

time point 10

ver = 10

data10

ver ≤ start time?

reads o1 and o2

T1
writes o1 and o2

correctness
violation!

paused

“Unready” time points solution

TRANSACT 2010

16

 Each time point has a boolean ready flag
 true when all the objects are updated

 readyPoint points to the latest time point in the ready prefix

curPoint
time point 9
ready = true

T2

ver = 5

o1

data5

ver = 5

o2

data5

time point 10
ready = false

ver = 10

data10

ver ≤ start time?

reads o1 and o2

T1
writes o1 and o2

consistent snapshot

readyPoint

paused

Limiting time point traversals

TRANSACT 2010

17

 The number of traversed time points might be large
 a long read-only txn interleaves with a lot of short update txns

 Limit this number
 the txn is aborted after traversing WindowSize time points

 Breaks the guarantee of unabortable read-only txns
 but improves performance

T1

… …

WindowSize

time point 9 time point 10 time point 11 time point 59 time point 60

Agenda

TRANSACT 2010

18

 Introduction and problem statement
 reduce the number of aborts

 memory consumption
 invisible reads

 SMV algorithm
 keeps versions that can help save aborts
 automatically removes others

 Preliminary evaluation
 good for read-dominated workloads

Preliminary evaluation – experiment setup

TRANSACT 2010

19

 STMBench7 evaluation framework – Java version
 read-dominated and read-write workloads support

 Implemented the following algorithms:
 SMV (WindowSize = 100)
 SMVUnlimited (WindowSize = ∞)
 TL2-style – mimics the basic behavior of TL2
 k-versioned – each object keeps k versions (like in LSA)

 Did not use the software optimizations used in the
original algorithms
 common code platform for comparing the algorithmic issues only

Read-dominated workloads

TRANSACT 2010

20

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
om

m
it

ra
tio

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style
0

100

200

300

400

500

600

700

1 2 4 8 16 32

Tr
an

sa
ct

io
ns

/s
ec

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

 Emphasize the strong sides of SMV:
 intensive use of old object versions by read-only txns
 read-only txns do not need to traverse many time points

Read-write workloads

TRANSACT 2010

21

0

100

200

300

400

500

600

1 2 4 8 16 32

Tr
an

sa
ct

io
ns

/s
ec

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

C
om

m
it

ra
tio

Threads (log scale)

SMV

SMVUnlimited

4-ver

8-ver

TL2-Style

 Present the worst-case scenario for SMV:
 update txns cannot leverage multiple versions (low commit-ratio)
 read-only txns traverse long time point list suffixes (high overhead)

Memory consumption

TRANSACT 2010

22

0

200

400

600

800

1000

1200

1 16 32

M
B

yt
es

Threads

SMV

SMVUnlimited

4-ver

8-ver

TL2

0

200

400

600

800

1000

1200

1400

1 16 32

M
B

yt
es

Threads

SMV

SMVUnlimited

4-ver

8-ver

TL2

SMVUnlimited memory
consumption is high because of

long read-only txns

Read-dominated workloads Read-write workloads

SMV memory consumption is
low – for most of the objects

keeps last version only

Further work

TRANSACT 2010

23

 Deuce framework
 field-based synchronization
 STAMP + STMBench7 benchmarks built-in

 Profiling
 overhead vs. aborts rate

 GC threads in the non-managed environment
 fine-tuned GC for txn objects

TRANSACT 2010

24

Thank you

	SMV: Selective Multi-Versioning STM
	Agenda
	Forceful aborts
	Unnecessary aborts
	Multi-Versioning in STM
	GC challenge
	Visibility challenge
	Agenda
	SMV design principles
	SMV design principles – GC challenge
	Automated GC in SMV
	SMV time progress
	Selective Multi-Versioning STM – overview
	Selective Multi-Versioning STM – GC overview
	“Unready” time points issue
	“Unready” time points solution
	Limiting time point traversals
	Agenda
	Preliminary evaluation – experiment setup
	Read-dominated workloads
	Read-write workloads
	Memory consumption
	Further work
	Thank you

